Brucella abortus nicotinamidase (PncA) contributes to its intracellular replication and infectivity in mice.
نویسندگان
چکیده
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. The mechanism and factors of virulence are not fully understood. Nicotinamidase/pyrazinamidase mutant (pncA mutant) of Brucella abortus failed to replicate in HeLa cells, and showed a lower rate of intracellular replication than that of wild-type strain in macrophages. Addition of nicotinic acid, but not nicotinamide, into medium supported intracellular replication of pncA mutant in HeLa cells and macrophages. The pncA mutant was not co-localizing with either late endosomes or lysosomes. The B. abortus virB4 mutant was completely cleared from the spleens of mice after 4 weeks, while the pncA mutant showed a 1.5-log reduction of the number of bacteria isolated from spleens after 10 weeks. Although pncA mutant showed reduced virulence in mice and defective intracellular replication, its ability to confer protection against the virulent B. abortus strain 544 was fully retained. These results suggest that PncA does not contribute to intracellular trafficking of B. abortus, but contributes to utilization of nutrients required for intracellular growth. Our results indicate that detailed characterizations of the pncA mutant may help the improvement of currently available live vaccines.
منابع مشابه
Macrophage plasma membrane cholesterol contributes to Brucella abortus infection of mice.
Brucella abortus is a facultative intracellular bacterium capable of surviving inside macrophages. Intracellular replication of B. abortus requires the VirB complex, which is highly similar to conjugative DNA transfer systems. In this study, we show that plasma membrane cholesterol of macrophages is required for the VirB-dependent internalization of B. abortus and also contributes to the establ...
متن کاملRoles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication.
The essential mechanisms and virulence factors enabling Brucella species to survive and replicate inside host macrophages are not fully understood. The authors previously reported that a putative guanosine 5'-diphosphate 3'-diphosphate (ppGpp) mutant (spoT mutant) of Brucella abortus failed to replicate in HeLa cells. The present study showed that the pattern of surface proteins and morphologic...
متن کاملRegulated upon activation normal T-cell expressed and secreted (RANTES) contributes to abortion caused by Brucella abortus infection in pregnant mice.
Brucella abortus (B. abortus) is a facultative intracellular pathogen that can survive inside macrophages and trophoblast giant cells, and the causative agent of brucellosis. In the present study, we found that production of regulated upon activation normal T-cell expressed and secreted (RANTES) due to B. abortus infection contributes to abortion in pregnant mice. B. abortus infected pregnant i...
متن کاملHost interferon-γ inducible protein contributes to Brucella survival
Brucella spp. are highly adapted intracellular pathogens of mammals that cause chronic infections while surving and replicating in host monocytes and macrophages. Although monocytes are normally susceptible to infection, pretreatment with pro-inflammatory cytokine interferon-γ (IFN-γ) activates cellular defense mechanisms that increase intracellular killing of Brucella and prevents bacterial re...
متن کاملBrucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection
BACKGROUND To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. METHODOLOGY/PRINCIPAL FINDINGS Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEMS microbiology letters
دوره 234 2 شماره
صفحات -
تاریخ انتشار 2004